Particle Filter Inference based on Activities for Overlapping Community Models
نویسندگان
چکیده
Various kinds of data such as social media can be represented as a network or graph. Latent variable models using Bayesian statistical inference are powerful tools to represent such networks. One such latent variable network model is a Mixed Membership Stochastic Blockmodel (MMSB), which can discover overlapping communities in a network and has high predictive power. Previous inference methods estimate the latent variables and unknown parameters of the MMSB on the basis of the whole observed network. Therefore, dynamic changes in network structure over time are hard to track. Thus, we present a particle filter based on node activities with various term lengths for online sequential estimation of the MMSB. For instance, in an e-mail communication network, each particle only considers e-mail accounts that sent or received a message within a specific term length, where the length may be different from those of other particles. We show through experiments that our proposed methods achieve both high prediction performance and computational efficiency.
منابع مشابه
A Real Time Adaptive Multiresolution Adaptive Wiener Filter Based On Adaptive Neuro-Fuzzy Inference System And Fuzzy evaluation
In this paper, a real-time denoising filter based on modelling of stable hybrid models is presented. Thehybrid models are composed of the shearlet filter and the adaptive Wiener filter in different forms.The optimization of various models is accomplished by the genetic algorithm. Next, regarding thesignificant relationship between Optimal models and input images, changing the structure of Optim...
متن کاملIdentifying overlapping communities using multi-agent collective intelligence
The proposed algorithm in this research is based on the multi-agent particle swarm optimization as a collective intelligence due to the connection between several simple components which enables them to regulate their behavior and relationships with the rest of the group according to certain rules. As a result, self-organizing in collective activities can be seen. Community structure is crucial...
متن کاملOverlapping Community Detection in Social Networks Based on Stochastic Simulation
Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...
متن کاملRobust inference on parameters via particle filters and sandwich covariance matrices
Likelihood based estimation of the parameters of state space models can be carried out via a particle filter. In this paper we show how to make valid inference on such parameters when the model is incorrect. In particular we develop a simulation strategy for computing sandwich covariance matrices which can be used for asymptotic likelihood based inference. These methods are illustrated on some ...
متن کاملDeveloping new Adaptive Neuro-Fuzzy Inference System models to predict granular soil groutability
Three Neuro-Fuzzy Inference Systems (ANFIS) including Grid Partitioning (GP), Subtractive Clustering (SCM) and Fuzzy C-means clustering Methods (FCM) have been used to predict the groutability of granular soil samples with cement-based grouts. Laboratory data from related available in litterature was used for the tests. Several parameters were taken into account in the proposed models: water:ce...
متن کامل